Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level in Chemistry (WCH02) Paper 01 Application Of Core Principles Of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WCH02_01_MS_1806
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
$\mathbf{1}$	The only correct answer is A	(1)
	B is not correct because NH_{3} is trigonal pyramidal	
C is not correct because $\mathrm{H}_{3} \mathrm{O}^{+}$is trigonal pyramidal		
D is not correct because PCl_{3} is trigonal pyramidal		

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is D	(1)
	A is not correct because BF_{3} is trigonal pyramidal	
B is not correct because CH_{4} is tetrahedral		
\mathbf{C} is not correct because $\mathrm{H}_{2} \mathrm{O}$ is V-shaped		

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is C	(1)
	A is not correct because the fluoride ion is the least polarisable	
	B is not correct because the fluoride ion is the least polarisable	

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is A B is not correct because the bonding electron pair will be closer to the chlorine C is not correct because the hydrogen will be $\delta+$ and the chlorine $\delta-$	(1)
D is not correct because the bonding electron pair will be closer to the chlorine and the hydrogen will be $\delta+$ and the chlorine $\delta-$		

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is C A is not correct because equilibria are dynamic and the reactions continue	(1)
B is not correct because equilibrium concentrations do not need to		
be equal		
D is not correct because this will only be true when is independent of the establishment of equilibrium$\quad \Delta \mathrm{H}=0$, and		

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is C A is not correct because oxidising agents are reduced B is not correct because oxidising agents are reduced and gain electrons D is not correct because oxidising agents gain electrons	(1)

Question Number	Answer	Mark
$\mathbf{7}$	The only correct answer is C	(1)
	A is not correct because atomic radius increases as atomic number of Group 2 metals increases	B is not correct because electronegativity decreases as atomic number of Group 2 metals increases
D is not correct because thermal stability increases as atomic number of Group 2 metals increases		

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is A B is not correct because this value has the correct magnitude but is negative C is not correct because this is the enthalpy change of the reverse reaction D is not correct because this is the enthalpy change of the reaction	(1)

Question Number	Answer	Mark
$\mathbf{9}$	The only correct answer is B A is not correct because calcium compounds give a yellow-red flame test C is not correct because calcium compounds give a yellow-red flame test and calcium chloride would form a neutral solution D is not correct because potassium chloride would form a neutral solution	(1)

Question Number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is B A is not correct because this compound has six carbon atoms not seven C is not correct because this compound has eight carbon atoms not seven	(1)
D is not correct because this compound has eight carbon atoms not seven		

Question Number	Answer	Mark		
$\mathbf{1 1}$	The only correct answer is A	(1)		
B is not correct because barium hydroxide is the most soluble				
Group 2 hydroxide				
C is not correct because is not correct because barium hydroxide				
is the most soluble Group 2 hydroxide				
D is not correct because is not correct because barium hydroxide				
is the most soluble Group 2 hydroxide			\quad	
:---				

Question Number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is D A is not correct because when expanding the bracket on the LHS, the $1 \mathrm{H}_{2}$ has been subtracted rather than added B is not correct because when expanding the bracket on the LHS, the $1 \mathrm{H}_{2}$ has been omitted C is not correct because when expanding the bracket on the LHS, the $1 \mathrm{H}_{2}$ has not been been changed to 2 H for the hydrocarbon formula	(1)

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is A	(1)
	B is not correct because ozone does not reflect UV radiation C is not correct because ozone does not break down chlorofluorocarbons	D is not correct because ozone does not reflect chlorofluorocarbons

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is C A is not correct because this ignores the charge balance and miscalculates the oxidation number of chlorine as +4	(1)
B is not correct because this neglects the negative charge on the RHS	D is not correct because this ignores the charge balance and miscalculates the oxidation number of chlorine as +6	

Question Number	Answer	Mark
15	The only correct answer is D A is not correct because the conversion of butanoic acid to butan1 -ol is a reduction B is not correct because the conversion of butanoic acid to butan-1-ol is a reduction C is not correct because the conversion of butanoic acid to butan1 -ol is a reduction	(1)

Question Number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is C A is not correct because this is 40% of 8.4 g (the mass of the product) B is not correct because this is the mass required if the yield is 100% D is not correct because the molar masses have been used the wrong way round	(1)

Question Number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is B A is not correct because this compound is oxidised to form an aldehyde or a carboxylic acid C is not correct because this compound cannot be oxidised D is not correct because this compound is oxidised to form an aldehyde or a carboxylic acid	(1)

Question Number	Answer	Mark
$\mathbf{1 8}$	The only correct answer is B A is not correct because this answer is based on 4 mol of nitrate ions per mole of calcium nitrate C is not correct because this answer is based on 1 mol of nitrate ions per mole of calcium nitrate	(1)
D is not correct because this answer is based on 0.5 mol of nitrate ions per mole of calcium nitrate		

Question Number	Answer	Mark
$\mathbf{1 9}$	The only correct answer is B	(1)
	A is not correct because the calculation gives an $A_{r}=63.9$ but $A_{r}(\mathrm{Ca})=40.1$ \mathbf{C} is not correct because the calculation gives an $\mathrm{A}_{r}=63.9$ but $\mathrm{A}_{r}(\mathrm{Mg})=24.3$ D is not correct because the calculation gives an $A_{r}=63.9$ but $\mathrm{A}_{r}(N a \times 2)=46$	

Question Number	Answer	Mark
$\mathbf{2 0}$	The only correct answer is B	(1)
	A is not correct because tetrathionate is formed not thiosulfate C is not correct because tetrathionate is formed not sulphite D is not correct because tetrathionate is formed not peroxodisulfate	

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	Iodide $/ \mathbf{I}^{-} /$Silver Iodide/Agl	Iodine ion /l/iodine	(1)

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	EITHER Chloride/Silver chloride / $\mathrm{Cl}^{-} / \mathrm{AgCl}$ OR Bromide /Silver Bromide / $\mathrm{Br}^{-} / \mathrm{AgBr}$ ALLOW Both	chlorine / Cl / chlorine ions bromine / Br /bromine ions	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (\text { (iii) }}$	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgI}(\mathrm{s})$		(2)
	Species (1) All state symbols M2 dependent on M1 (or near miss)		
	ALLOW		
	TE on incorrect halide in (a)(i) Max 2 If the halide in (a)(ii) is used in a completely correct equation award 1		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i)}$	$\mathrm{HCl}(\mathrm{aq}) / \mathrm{HCl}(\mathrm{g}) / \mathrm{HCl}$ $\mathbf{I G N O R E}$ Hydrogen chloride / hydrochloric acid		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i)}$	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KCl} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl}$		
	ALLOW		(1)
	$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$ ALLOW Multiples HKSO_{4} IGNORE State symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 1 (c) (i)}$	$\left(\mathrm{In} \mathrm{H}_{2} \mathrm{SO}_{4}\right)+6 /+\mathrm{VI} / 6+$	(1)		(2)
	$\left(\mathrm{In} \mathrm{SO}_{2}\right)+4 /+\mathrm{IV} / 4+$	(1)		
	Penalise omission of + sign once only			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i)}$	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathbf{2 H}+\mathbf{2} \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+$ $\mathbf{2 H} \mathrm{H}_{2}$ $\mathbf{M 1 :}$ for both Br_{2} and SO_{2} as products (1) M2: for coefficients 2, 2 and 2 ALLOW multiples M2 depends on M1 IGNORE state symbols even if incorrect	(2)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (d)}$	ALLOW products in either order with matching observation Hydrogen sulfide / H2S Smell of (rotten) eggs/pungent / bad ALLOW Lead ethanoate/nitrate paper turns black (1)		(4)
Sulfur / S / S8			
Yellow and solid /precipitate			
If I2 is included with the two reduction products			
then Max 3			
Observation depends on correct product			
IGNORE further tests on products and results			

(Total for Question 21 = 14 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a)}$	To increase the surface area (of the solid)		(1)
	OR		
	to increase rate (of reaction)/goes faster/speeds up I GNORE To ensure complete reaction		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b)}$	$\mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$		(2)
	$\mathbf{O R}$		
	$\mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$		
	Species Balancing and all state symbols $\mathrm{M2}$ dependent on M 1 ALLOW	(1)	
	M 2 for fully correct equation with $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$		

Question Number	Acceptable Answers	Reject	Mark
22(c)	M1: Maximum rate at start / starts fast and (gradually) slows (until it stops)/rate decreases ALLOW the rate is constant over the first minute (as it is almost a straight line) M2: Collision frequency decreases/number of (successful) collisions decreases AND concentration of hydrochloric acid decreases / surface area of mineral decreases/concentration of reactants/ reactants used up M3: Rate is zero / reaction stops (between 3.5-4 min) when all MgCO_{3} /solid has reacted	Between molecules/atoms Concentration of MgCO_{3} Just activation energy reasoning All the acid/ reactants used up	(3)

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	1st mark: Reading off $200 \mathrm{~cm}^{3}$ from graph 2nd mark: mol $\mathrm{CO}_{2}=\mathrm{mol} \mathrm{MgCO}_{3}$ $(=200 \div 24000)$ $=0.008333(\mathrm{~mol}) / 8.333 \times 10^{-3}(\mathrm{~mol})$ or fraction $1 / 120(\mathrm{~mol})$ IGNORE SF except 1 SF Correct answer with or without working (2) scores No TE on incorrect reading from graph		(2)

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	MP1		(2)
	$\begin{aligned} & \text { Mass } \mathrm{MgCO}_{3}(=0.008333333 \times 84.3) \\ & =0.7025 / 0.703(\mathrm{~g}) \end{aligned}$		
	ALLOW		
	0.702 (g)		
	Use of $84 \mathrm{~g} \mathrm{~mol}^{-1}=0.70(0) \mathrm{g}$ TE from d(i)		
	Correct answer with or without working scores 1 MP2		
	$\% \text { of } \mathrm{MgCO}_{3}=\frac{0.7025}{0.936} \times 100 \%$		
	\% of $\mathrm{MgCO}_{3}=75.0534 \%$		
	ALLOW Use of $84 \mathrm{~g} \mathrm{~mol}^{-1}$ giving 74.78632\%		
	Correct answer with or without working scores 1		
	I GNORE SF except 1 SF in MP1 and MP2		
	TE from incorrect no of moles from d (i)		
	TE from incorrect Mr calculation in MP1 as long as the answer is less than 100 \%		

Question Number	Acceptable Answers	Reject	Mark
22(e)	M1 CO_{2} (slightly) soluble/dissolves/absorbed in water ALLOW Remains in water M2 (volume of CO_{2} collected is less) so mass / moles of MgCO_{3} lower /reduced OR (volume of CO_{2} collected is less) so \% (by mass) of MgCO_{3} lower M2 is dependent on M1 or indication that the volume of CO_{2} is less.	CO_{2} escapes	(2)

Question Number	Acceptable Answers	Reject	Mark
*23(a)(i)	M1:		(3)
	The mixture (initially) goes darker (brown) (because the concentration increases)		
	M2:		
	The mixture turns paler /colourless (on standing)		
	AND		
	... because the equilibrium shifts to the right		
	ALLOW		
	Suitable alternatives for "to the right", such as:		
	towards the products		
	towards $\mathrm{N}_{2} \mathrm{O}_{4}$		
	in forward direction favours the right		
	Right-hand side has fewer (gaseous) moles/molecules	atoms	
	OR		
	Left-hand side has more (gaseous) moles/molecules		
	I GNORE References to rate		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Equilibrium shifts to the left/backwards		(1)
	And in the endothermic direction / away from the exothermic side/because the (forward) reaction is exothermic	IGNORE Colour change	

Question Number	Acceptable Answers	Reject	Mark
23(b)	M1: (Addition of alkali) Alkali/ OH^{-}reacts with H^{+}/ alkali removes $\mathrm{H}^{+} /$neutralises acid H^{+} ALLOW $\begin{equation} \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ I GNORE increases the amount of water M2: Equilibrium (position) shifts to the right (forming yellow $\mathrm{CrO}_{4}{ }^{2-}$) ALLOW Suitable alternatives for "to the right", such as: towards the products towards $\mathrm{CrO}_{4}{ }^{2-} / \mathrm{H}^{+}$ in forward direction favours the right M2 is dependent on M1 or near miss		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a) (i)}$	(Reagents): potassium hydroxide /KOH / sodium (1) hydroxide / NaOH (Conditions): Aqueous/water and heat ALLOW Warm/reflux/ high temperature for heat (1)	OH^{-}	(2)
	The conditions mark depends on a correct reagent mark or near miss		

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	 M1 Curly arrow from lone pair on OH^{-}to carbon M2 Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br or just beyond M3 Dipole M4 Correct organic product and Br^{-}ion/ $\mathrm{KBr} / \mathrm{NaBr}$ OR Correct $\mathrm{S}_{\mathrm{N}} 2$ mechanism scores (4) M1 Dipole and Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br or just beyond M2 Curly arrow from lone pair to carbon M3 Correct intermediate showing dotted bonds to both Br and OH and negative charge. M4 Correct organic product and Br^{-}ion/ $\mathrm{KBr} / \mathrm{NaBr}$ ALLOW M1, M2 and M4 for $\mathrm{S}_{\mathrm{N}} 1$ mechanism IGNORE Omission of lone pair on Br^{-}ion	Missing hydrogens/ wrong alcohol	(4)

Question Number	Acceptable Answers	Reject	Mark
* 24(b)	Any three from M1 Water forms two hydrogen bonds M2 butan-1-ol forms (one) hydrogen bond(s) M3 1-bromobutane forms London Forces (1) M4 butan-1-ol forms hydrogen bonds with water M5 butan-1-ol forms London Forces with 1bromobutane M6 1-bromobutane cannot form hydrogen bonds with water ALLOW van der Waals' / dispersion forces I GNORE Dipole-dipole interactions/polarity		(3)

(Total for Question 24 = 9 marks)
Total for SECTI ON B = 41 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (a) (i) ~}$	$\mathrm{M}_{\mathrm{r}} /$ molecular ion / molar mass (of ethanol = 46) IGNORE Reference to ${ }^{12} \mathrm{C}$ not ${ }^{13} \mathrm{C}$	atomic mass	(1)

Question Number	Acceptable Answers	Reject	Mark
25(a)(ii)	$\mathrm{CH}_{2} \mathrm{OH}^{+}$ OR Displayed formula ALLOW Charge on any part of the ion CH_{3} is lost (from the molecular ion)/ $\mathrm{C}-\mathrm{C}$ bond is broken I GNORE Fragmentation/molecule breaks down Charge or dot on CH_{3}	$\mathrm{CH}_{3} \mathrm{O}^{+}$	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (a) (\text { iii) }}$	O-H and (between) $3750-3200\left(\mathrm{~cm}^{-1}\right)$	Single wavenumber Just 'Alcohol/ethanol'	(1)
	ALLOW Any range that includes 3350 within the correct range		

Question Number	Acceptable Answers	Reject	Mark		
*25(b)(i)	1st mark: Atom / group of atoms /part of a (1) molecule	Just group	(2)		
	ALLOW Examples such as C=C, O-H 2nd mark:	Just alkene, alcohol			
that determines its chemical					
properties /that determines its					
characteristic set of reactions/how it					
will react					
IGNORE				\quad	(1)
:---	\quad	Physical properties			
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (b) (i i)}$	$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Na} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{H}_{2}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{Na}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+1 / 2 \mathrm{H}_{2}$ OR Other multiples (2) Species Balancing (1)		
M2 dependent on award of M1 or near miss such as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{Na}$ or incorrect charges on the ethoxide.			
ALLOW ionic charges on product			
IGNORE State symbols, even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (c) (i)}$	MP1 Moles of $\mathrm{CO}_{2}(=\underset{44(.0)}{1.79})$ $=0.040681818(\mathrm{~mol})$	(2)	
	MP2: Mass of $\mathrm{C}(=12(.0) \times 0.040681818)$ $=0.488 \mathrm{~g}$		
IGNORE SF except 1 SF Correct answer with or without working scores (2)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (c) (i i)}$	Mass of O ($=1.20-0.0610-0.488)$ $=0.650818=0.651(\mathrm{~g})$		(1)
	IGNORE SF except 1 SF ALLOW TE from (c)(i)		

Question Number	Acceptable Answers	Reject	Mark
25(c)(iii)	M1 (Mole ratios) $\begin{array}{lll} C & : H & : O \\ \frac{0.488}{12(.0)} & \frac{0.0610}{1(.0)} & \frac{0.651}{16(.0)} \\ =0.0407 & =0.0610 & =0.0407 \tag{1} \end{array}$ I GNORE SF and rounding M2 (Empirical formula) $\begin{equation*} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \tag{1} \end{equation*}$ No TE from incorrect mole ratio		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 5 (c) (i v) ~}$	E has Structure 2 because Either M_{r} of empirical formula $=59$ and $\frac{118}{59}=2$ OR molecular formula of structure 2 is $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ OR the molecular formula of structure 1 is $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$ which is not a multiple of the empirical formula OR the ratio of carbon to oxygen in structure 2 is 1:1 which is the same as the empirical formula OR the ratio of carbon to oxygen in structure 1 is 5:2 No TE from (c) (iii)	(1)	

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :---: |
| $\mathbf{2 5 (c) (v)}$ | M1
 Test with bromine / bromine water (1)
 M2 | | (2) |
| Structure $\mathbf{1}$ turns colourless
 (from orange / yellow/ brown)
 and
 Structure 2 no change
 OR (1)
 M1
 Test with acidified potassium
 manganate((VII))/KMnO4(aq) (1)
 M2
 Structure 1 turns colourless (from
 purple/pink)
 and
 Structure 2 no change | | | |

Question Number	Acceptable Answers	Reject	Mark
25(c)(vi)		(1)	
	ALLOW OH for O-H and a single carboxylic acid which can be oxidised IGNORE Skeletal and structural formulae Connectivity of a vertical OH		

Question Number	Acceptable Answers	Reject	Mark
*25(c)(vii)	M1 Restricted rotation / no rotation/		(2)
	AND around the C=C/ double bond/ pi (1) bond	M2 Each or both C atom(s) of the (C=C) double bond is attached to (two) different groups/different atoms/functional groups This can be shown with 2 diagrams of structure 1	Two different molecules
(1)			

(Total for Question 25 = 19 marks)
Total for SECTION C = 19 marks

TOTAL FOR PAPER $=80$ MARKS

